CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

www.PapaCambridge.com MARK SCHEME for the October/November 2014 series

4024 MATHEMATICS (SYLLABUS D)

4024/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

®® CAMBRIDCE

Page	2 Mark Scheme	Sy. per
	Cambridge O Level – October/November 2014	402
Abbrevi	iations	Car I
Abbievi		34
cao	correct answer only	Oth
cso	correct solution only	38
dep	dependent	100
ft	follow through after error	· On
isw	ignore subsequent working	7
oe	or equivalent	
~~		

Abbreviations

or equivalent oe SCSpecial Case

without wrong working www

seen or implied soi

Qu	estion	Answers	Mark	Part marks
1	(a)	41 006	1	
	(b)	240 000	1	
2	(a)	12	1	
	(b)	(0).08	1	
3	(a)	$\frac{3}{100}$ cao	1	
	(b)	82	1	
4	(a)	64	1	
	(b)	67	1	
5		(2a-3b)(c+2d)	2	B1 for one of the partial factorisations $c(2a-3b)$; $2d(2a-3b)$; $2a(c+2d)$; $-3b(c+2d)$ or their negatives, seen.
6	(a)	$\frac{8}{9}$	1	
	(b)	28	1	
	(c)	90	1	
7		A correct method to eliminate one variable Either $x = 4$ or $y = -1$ WWW.	M1 A1	
		Both $x = 4$ and $y = -1$ WWW.	A1	If [0] earned, then award C1 for a pair of values that satisfy either equation.

Page 3	Mark Scheme	Sy. per
	Cambridge O Level – October/November 2014	402

				3
8	(a)	9	1	Mady.
	(b)	8	1	ambridge
	(c)	25	1	
9		8 WWW	3	M1 for a recognisable attempt at Pythagoras' Theorem with sides 10 and 6. M1 for $(AT^2 =) 10^2 - 6^2$ oe
10	(a)	$P \cap Q \cap R'$ oe	1	
	(b)	47	2	M1 for Cricket set inside the Football set, e.g. in a Venn diagram; Ans. = 30+8+9; "30 play both cricket and football".
11	(a)	$\begin{pmatrix} 330 \\ 417 \end{pmatrix}$	2	B1 for 330 or 417 in a (2 by 1) matrix, or for (330 417).
	(b)	P shows the amount earned in Week 1 and Week 2, oe	1 dep	Must refer to (i) the amount earned (money, earings, \$, etc) and (ii) the two weeks.
12	(a)	930	1	
	(b)	$\frac{2s-an}{n}$ oe	2	M1 for correct first step, e.g. $2s = an + bn$; $s = na/2 + nb/2$ or B1 for a correct expression for b seen in working, but followed by an error.
13		$d = \frac{5v^2}{64}$		M1 for $d=kv^2$, or for $5 = k \times 64$;
		125	3	B1 for $k = 5/64$, or for $\frac{d}{5} = \frac{40^2}{8^2}$
14	(a)	3.65	1	
	(b)	60 WWW	3	B1 for 192; or for cost price = \$120, soi by (profit =) \$72. M1 for $\left(\frac{their192 - their120}{their120}\right) \times 100$ oe
15	(a)	Triangle ABC drawn with an acceptable C.	2	B1 for $AC = 7$ cm or B1 for $\angle CAB = 130^{\circ}$
	(b)	21 to 22 inclusive, WWW; Or FT their triangle, provided the perp. height is not one of the sides, WWW.	2√	M1 for $\frac{1}{2}$ base × height with matching base and height.

Page 4	Mark Scheme	Sy. Oper
	Cambridge O Level – October/November 2014	402

			,	6
16 ((a)	x + y = 6 drawn correctly	1	TANK THE THE TANK THE
((b)	2y + x = 4 drawn correctly	1	ambridge
((c)	Correct region shaded, (FT for sloping lines with one correct line).	2√	B1 for R correctly bordered by the lines $y = 2$ and $x = -1$; or FT appropriate shading between their sloping lines, provided one is correct
17 ((a)	Valid method, with $\frac{1}{2}(11+7)\times 4\times 5$ oe, leading to 180	1	AG
((b)	20 WWW	3	B1 for 22 500 or 0.18 and M1 for $\sqrt[3]{\frac{figs225}{figs18}}$ soi
18 ((a)	14 41	1	
((b)	149	1	
((c)	(i) 2 5 10 17	1	
		(ii) $n^2 - 1$ oe	1	
19 ((a)	1.36×10^9	1	
((b)	(i) 5.6×10^9	1	
		(ii) 7.93×10^5	2	B1 for figs 793, or for $N \times 10^5$ with $1 < N < 10$.
20 ((a)	F	1	
((b)	С	1	
((c)	В	1	
((d)	Е	1	
21 ((a)	(i) alternate (angles)	1	
		(ii) 119°	2	M1 for $\frac{180-58}{2}$, or B1 for a base angle = 61°
((b)	120 WWW	2	C1 for 240. M1 for $2x + 80 + 95 + 125 = 540$, oe

Page 5	Mark Scheme	Sy. oer
	Cambridge O Level – October/November 2014	402

22	(a)	42	1	andr.
	(b)	Correct plots at 20, 40, 60, 90, 120 and CF curve drawn	2	B1 for three or four correct plots
	(c)	(i) 62 to 64 inclusive	1√	FT from their CF graph
		(ii) 41 to 46 inclusive WWW, FT (F ₈₀ –F ₅₀) from their graph.	2√	M1 for attempt to calculate $(F_{80}-F_{50})$ from their graph.
23	(a)	(i) the point B marked correctly	1	
		(ii) the point C marked correctly	1	
		(iii) the point D marked correctly	1	If [0] scored in (a), in (aiii) award B1 for the vector $\begin{pmatrix} -6 \\ 1 \end{pmatrix}$ soi.
	(b)	(i) q-p	1	
		(ii) $\frac{2}{3}$ p + $\frac{1}{3}$ q	1√	
		(iii) $\frac{1}{3}$ $\mathbf{q} - \left(\frac{4}{3}\right)\mathbf{p}$, or FT their(ii) – 2 \mathbf{p}	2√	M1 for OT = OR + RT Or for OT = OP + PR + RT Or for OT = OQ + QR + RT Or equivalents in terms of p and q .